Big Data for Public Health –
Public Data for Big Health

Stefan Thurner
with

Peter Klimek, Silke Aichberger, Anna Chmiel

supported by

EC FP7 projects LASAGNE and MULTIPLEX
date — patient ID — HCP ID — location — diagnosis — side diagnoses — prescription — price of generic drug/treatment — pharmacy ID — price of drug — date of purchase
100.000.000 lines per year
Data set

→ medical claims data

for every payed healthcare service there is one data line
Data set

- 8,000,000 patients
- 100,000,000 patient visits per year
- 2,000,000 hospitalisations per year
- 12,000 health care providers
- 6,102 diseases (ICD10 code)
- 1,171 drugs (ATC code)
- 255 hospitals
- 1,238 pharmacies
Network medicine
Co-morbidity networks

starting point: usually patients have more than one disease which diseases occur together? → co-morbidity networks

co-morbidity networks = health state of population (phenotype)

what can we learn from co-morbidity networks?
What is a co-morbidity network?

coopercurrence of diseases in population

diseases ‘linked’ if many patients have both at same time
Co-morbidity network of Austria
The co-morbidity network: children
The co-morbidity network: adults age 40-48
Empirical finding

the way individual diseases occur = diffusion on these networks

Prediction of health trajectories
Co-morbidity networks allow predictions
Co-morbidity networks allow predictions: DM

if have diabetes what is odds ratio to have any other disease?

Co-morbidity network of diabetes explains ...

- analysis equivalent to 40,000 individual epidemiological studies
- check which co-morbidity is causal
- confirm controversial relation of increased risk for Parkinson
- gender differences in progression of congestive heart failure
- females lower risk of hypertension during fertile age
- type 1 diabetes leads detection of depressions
- schizo-affective disorders lead type 2 diabetes, suggesting similar pathogenic or medication-related mechanisms

Efficacy of prevention
Co-morbidity networks and prevention

identify co-morbidities – check ‘causality’ – treat cause
New classification of diseases
What is Diabetes?

Observe:

diabetes co-occurs with other diseases in robust patterns

→ allows us to classify diabetes differently
New “types” of diabetes – defined by co-morbidity

define new phenomenological types of DM through co-morbidity
Which drug / therapy works?
• take a disease for which 2 therapies exist A and B
• compute all co-morbidities following therapy A
• compute all co-morbidities following therapy B
• compare: follow up costs, hospitalization time, co-morbidities
How genetic is your disease?
What explains a disease?

- genetic factors
- metabolic factors
- environmental / toxicogenetic factors
- epigenetic factors
How genetic is diabetes?

Genes associated with diabetes type 2

- HHEX/IDE/KIF11
- TCF7L2
- KCNJ11
- MTNR1B
- HNF1A
- FTO
- GCKR
- PPARG
- ADCY5
- CDKAL1
- SLC30A8
- CRY2
- FADS1

type 2 diabetes 25% hereditary

5-10% of variance explained by gene variants*

→ hard to tell!

* ME Travers MI McCarthy, Human Genetics 130 41-58 (2011)
Compare co-morbidity and genotype networks

if co-morbidity network is “similar” to genetic network → yes it is genetic
Ranking of likelihood of genetic cause in multi-factoral diseases

• compute “similarity” between phenotypic and genetic network
• hypothesis: the more similar – the “more” genetic influence
• rank multi-factoral diseases wrt similarity in pheno-geno networks

only take cases that are unlikely to be of statistical origin

\[p < 0.00001 \]
<table>
<thead>
<tr>
<th>Condition</th>
<th>Code</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 1 diabetes mellitus</td>
<td>E10</td>
<td>0,50</td>
</tr>
<tr>
<td>Transient cerebral ischemic attacks and related syndromes</td>
<td>G45</td>
<td>0,50</td>
</tr>
<tr>
<td>Benign neoplasm of colon, rectum, anus and anal canal</td>
<td>D12</td>
<td>0,33</td>
</tr>
<tr>
<td>Eating disorders</td>
<td>F50</td>
<td>0,33</td>
</tr>
<tr>
<td>Polycythemia vera</td>
<td>D45</td>
<td>0,25</td>
</tr>
<tr>
<td>Other diseases of intestine</td>
<td>K63</td>
<td>0,25</td>
</tr>
<tr>
<td>Other cerebrovascular diseases</td>
<td>I67</td>
<td>0,21</td>
</tr>
<tr>
<td>Other and unspecified diseases of blood and blood-forming organs</td>
<td>D75</td>
<td>0,21</td>
</tr>
<tr>
<td>Other congenital malformations of heart</td>
<td>Q24</td>
<td>0,20</td>
</tr>
<tr>
<td>Malignant neoplasm of heart, mediastinum and pleura</td>
<td>C38</td>
<td>0,16</td>
</tr>
<tr>
<td>Mesothelioma</td>
<td>C45</td>
<td>0,16</td>
</tr>
<tr>
<td>Specific personality disorders</td>
<td>F60</td>
<td>0,16</td>
</tr>
<tr>
<td>Overweight and obesity</td>
<td>E66</td>
<td>0,13</td>
</tr>
<tr>
<td>Other cardiac arrhythmias</td>
<td>I49</td>
<td>0,13</td>
</tr>
<tr>
<td>Cerebral infarction</td>
<td>I63</td>
<td>0,13</td>
</tr>
<tr>
<td>Type 2 diabetes mellitus</td>
<td>E11</td>
<td>0,11</td>
</tr>
<tr>
<td>Secondary parkinsonism</td>
<td>G21</td>
<td>0,11</td>
</tr>
<tr>
<td>Other and unspecified myopathies</td>
<td>G72</td>
<td>0,11</td>
</tr>
<tr>
<td>Congenital malformations of cardiac chambers and connections</td>
<td>Q20</td>
<td>0,10</td>
</tr>
<tr>
<td>Other congenital malformations of eye</td>
<td>Q15</td>
<td>0,09</td>
</tr>
<tr>
<td>Congenital malformations of aortic and mitral valves</td>
<td>Q23</td>
<td>0,09</td>
</tr>
<tr>
<td>Parkinsons disease</td>
<td>G20</td>
<td>0,08</td>
</tr>
<tr>
<td>Essential (primary) hypertension</td>
<td>I10</td>
<td>0,07</td>
</tr>
<tr>
<td>Anoph</td>
<td>Q11</td>
<td>0,06</td>
</tr>
</tbody>
</table>
Classify multi-factoral diseases

- do the same with metabolic, environmental, pathway networks

→ every disease gets assigned 3 numbers:

- genetic rank
- toxicogenetic rank
- pathway importance
Side effects – personalized
Side effect networks

you have disease $x \rightarrow$ get medication $y \rightarrow y$ causes disease z
Side effects for diabetes treatments: Insulin

Diabetes E11
- C04
- C10
- C18
- C22
- pancreas x 10
- C25
- C34
- peritoneum x 7
- C48
- C50
- C56
- brain x 4
- C71
- lymph x 2
- C77

- Insulin
- Medformine
- Statine
- Insulin + Statine
Side effects for treatment: Insulin + Statines

Diabetes E11
- C04
- C10
- C18
- C20
- C25
- C34
- C48
- C50
- C61
- C77
- C78

- Insulin
- Medformine
- Statine
- Insulin + Statine

colon x 0.7
prostate x 0.5
lymph x 0.6
second. x 0.5
What are the side effects of Metformin?

Diabetes E11
C04
C10
C18
C20
C25
C34
C50
C55
C61
C77
C78

uterus x 2.7
second. x 2.4

Insulin
Metformine
Statine
Insulin + Statine
Disclaimer

NO medical statement are made here!

- This reflects the *status quo* in the population only
- No understanding why
- No mechanism clarified
- No medical understanding
- Need experts for this
A telescope into the past
Unexpected causes for diabetes?

take all \(\sim 300,000 \) diabetes patients. Fraction of patients in population given birth date? \(\rightarrow \) famines in Austria

Message: mother suffers hunger in pregnancy \(\rightarrow \) baby develops diabetes in later life

S Thurner et al. PNAS 110, 4703-4707, (2013)
A window into the past II
A window into the past II
Vizualize healthcare system
The healthcare system is ...

- network of patient flows
- network of information flows
- network of cash flows
- it is a co-evolving multi-layer network!
Patient-flow network

- many patient flows are medically reasonable – many are not
- health care costs can be completely transparent – if wanted
- patient flows + comorbidity across age \rightarrow future costs
Patient-flow network as we like it

- General practitioner
- Medical specialist
- Pharmacy
- Hospital
Patient-flow network
Patient-flow network of Austria 2006
Patient-flow network: patterns
With this information one can monitor ...

- regional differences in quality of care / prescriptions / success rates / diagnoses / costs / transparency /
- ‘cyclic flows’: which ones are medically necessary?
- success of prevention schemes (medical & economic)
- nation-wide behaviour of patients: drug use, vaccination rates
- visiting frequency as function of accessibility of HCP
- optimal health care coverage densities
Vision

• 1:1 agent based model of the Austrian health care system
• use data to fully calibrate the model
• estimate how individual patients take decisions
• estimate how HCP take decisions
• make policy experiments: insurers and politicians
Summary

• begin to predict health trajectories from co-morbidity networks
• see which medication works
• make gender differences visible
• compute personalized side effects
• new classification of diseases in terms of co-morbidity
• compute medical and economical value of prevention schemes
• quantify resilience, robustness, sustainability of health care system
Collaboration partners – experts

Alexandra Kautzky-Willer, MUW
Gottfried Endel, Hauptverband
Miriam Leitner, MUW
Irmgard Schiller-Frühwirth, Hauptverband
Herwig Ostermann, Gesundheit Österreich
Klaus Kratochwill, MUW
Statistics

• Phenotype NW: ϕ is correlation coefficient (binary), Kramers coefficient

• Relative Risk:

$$\frac{a/(a + c)}{b/(b + d)}$$

• Odds Ratio:

$$\frac{P(A)(1 - P(B))}{P(B)(1 - P(A))}$$

where $P(A) = a/(a + c)$ and $P(B) = b/(b + d)$