On the Prototyping of an ICT-Enhanced Toilet System for Assisting Older Persons Living Independently and Safely at Home

P Panek, G Fazekas, T Lüftenegger, P Mayer, T Pilissy, M Raffaelli, A Rist, R Rosenthal, A Savanovic, A Sobjak, F Sonntag, A Toth, B Unger

Presenter: Paul Panek
panek@fortec.tuwien.ac.at
Institute for Design & Assessment of Technology, TU Wien

eHealth Summit Austria, May 23-24, 2017
Schönbrunn Palace, Vienna, Austria
Introduction

Surprisingly, there is one very common appliance which we use several times a day which has not changed since its invention: our toilet.

ICT-enhanced Toilet Supporting Active Life (AAL JP)

iToilet intends to bring benefit to:

• **primary end-users’** dignity and independence: enhancing body stability on the toilet (adjustable height, hands free for handles), supporting sitting down and standing up process (dynamic adaptation of tilt and height), and increased safety via emergency detection.

• **secondary users/care persons**: the burden when assisting the end user will be reduced by support by the toilet itself.

• **care institutions**: not only the care service offered to the clients will be enhanced but also health and well-being of the employees.
State of the Art

- "Friendly Restroom" project (TU Delft, NL), 2002-05
- "The Future Bathroom“ project (Univ Sheffield, UK) 2008-11
- “iToilette”, vital parameter, RWTH Aachen, 2009-11
- “i-SUPPORT”, robotic shower, h2020, started 2015
- “COACH”, prompts for supporting hand washing, Univ Toronto, CA, started early 2000
ICT Enhanced Toilet

The existing basic toilet (adjustability of height and tilt) is enhanced by adding (optional) ICT modules:

- Speech control +
- Automatic adjust of toilet bowl +
- Alarm service / emergency recognition +
- Care documentation +
- Dynamic support for sitting down / standing up +

Also possible but not foreseen for full implementation:

- Guidance ?
- Vital parameter measurements ?
Lift WC & „Mobile“ Standing up support

(Replaces existing toilet bowl) (Works on top of existing toilet bowl)
Envisaged iToilet Room

Illustration of iToilet technical environment

Look into an iToilet room.
Project Phases

- User Requirements
- Specification
- Implementation of Prototype 1 (PT1)
 - Participatory design
- Lab user testing PT1 (now)
 - Business models, exploitation plan
 - Redesign for Prototype 2
- Field trials (2018)
Aims and specific target settings

- Aim: increase autonomy, self esteem, quality of life... of older persons living at home
- For efficiency reasons we run user trials in 2 institutions (Budapest and Vienna)
- We want to demonstrate, measure and prove the impact of the iToilet for the users
- We have set up strong user involvement right from the beginning
Gathering User Requirements

Methods:

- Presentations
- focus groups
- interviews

Photo: NIMR, Budapest
User Requirements - Findings

<table>
<thead>
<tr>
<th>High priority user requirements</th>
<th>Medium priority user requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 bilateral (general stability and support), removable/foldable handrails (wheelchair)</td>
<td>1 self-sanitizing seat and bowl</td>
</tr>
<tr>
<td>2 height adjustment (in a wide range) and tilt adjustment</td>
<td>2 shelf/tray area</td>
</tr>
<tr>
<td>3 fall detection, emergency recognition and emergency call</td>
<td>3 upgradability, modularity</td>
</tr>
<tr>
<td>4 simplicity (few, straightforward buttons on both handrails)</td>
<td>4 automatic or button operated flush</td>
</tr>
<tr>
<td>5 fixed toilet paper holder (on both handrails)</td>
<td>5 care documentation</td>
</tr>
<tr>
<td>6 sit down and stand up support</td>
<td>6 spoken commands</td>
</tr>
<tr>
<td>7 custom settings (tilt and height) w. user identification</td>
<td>7 individually formed toilet seat</td>
</tr>
<tr>
<td>10</td>
<td>8 voice guide</td>
</tr>
<tr>
<td></td>
<td>9 automatic dispensing of toilet paper</td>
</tr>
<tr>
<td></td>
<td>10 bidet with dryer and adjustable water jet</td>
</tr>
<tr>
<td></td>
<td>11 urine meter /analyser</td>
</tr>
</tbody>
</table>
Participatory Design

Initial topics

- Toilet paper dispenser,
- speech control,
- various mechanical buttons and
- remote controls and grip bars.
Preparing Lab Trials

- Ethics framework prepared
- Integration of Lab prototype
- Installation in toilet rooms and technical tests on site
- First Lab user trials currently (May 2017) carried out in AT and HU
- Main objectives:
 - Investigating actual support given by motorised chair
 - Usefulness & usability of other features
- Gathered feedback of users to guide development
Prototype 1 (PT1) for lab trials
Functionality

- Adjusting height and tilt of toilet chair via hand held remote control
- Speech control commands: higher, lower, stand up, sit down
- Moving chair in default position when room is empty
- Moving chair into previously stored position when individual RFID tag is read on entrance door
- Triggering emergency call via manual button, voice command or fall detector
Summary and Outlook

- **iToilet**: Modular architecture, individually adjustable
- Key concern: ensure relevance to user
 - Enable the user to experience the assistive toilet as **useful** and **usable**.
- Collected Comments from users are intended to guide development of improved PT1
- Continuing Participatory Design
- Development of PT2 for field trials in 2018
Some Publications

More information...

www.itoilet-project.eu

- Project Partners are: Institut für Gestaltungs- und Wirkungsforschung, TU Wien, Austria; Santis Kft., Debrecen, Hungary; Smart Com d.o.o., Ljubljana-Črnůže, Slovenia; Carecenter Software GmbH, Linz, Austria; CS Caritas Socialis GmbH, Wien, Austria; Országos Orvosi Rehabilitációs Intézet, Budapest, Hungary; Synthema srl, Ospedaletto - Pisa, Italy
- The project iToilet is co-funded by the AAL Programme (AAL-2015-1-084) and the National Authorities and R&D programs in Austria, Hungary, Italy and Slovenia.